5.3 震源断層モデルの構築

検討対象とする震源断層モデルは J-SHIS (2010版)を基本とするが、琵琶湖西岸断層帯、鈴 鹿西縁断層帯、柳ヶ瀬・関ヶ原断層帯については、地表面の断層トレースに忠実となるよう位置 修正するとともに、最近の知見を反映して設定した。断層パラメータは地震調査研究推進本部 (2009)の強震動予測レシピ(「震源断層を特定した地震の強震動予測手法」)に従い設定した。 検討対象とする5断層帯の震源モデル概略図を図 5.3.1に示す。また次項より内陸5断層帯の 各断層モデルを示す。なお断層帯を構成する各断層の位置および名称は地震調査研究推進本部の 「主要活断層帯の長期評価」資料によった。

図 5.3.1 検討対象とする5断層帯の震源モデル概略図

(1) 琵琶湖西岸断層帯(北部·南部 連動)

【想定活動区間】

北部、南部の両区間が連動するものとして想定
 ※地震調査研究推進本部「長期評価資料」では、過去に両断層帯は別々の時期に活動したと
 推定されるが、両断層が同時に活動する可能性もあるとされている。

【モデル地表トレース位置・形状】

- ・ 北部と南部の間の勝野断層はティアフォルト(裂け断層)であり、北部区間の南端を上寺断 層と設定
- ・ 北部を構成する各断層の影響を平滑化するようモデル地表トレースを断層帯中心位置に設定
- 南部については J-SHIS(2010版)を踏襲

【モデル傾斜角】

・ 琵琶湖西岸断層帯における小松原ほか(1999)のトレンチ調査結果および片尾(2013)によ る微小地震の推定断層面傾斜角分布を踏まえた上で、J-SHIS(2010版)を踏襲し、北部45°、 南部35°の西傾斜と設定

【アスペリティの個数・位置】

- ・ 北部:平均変位速度が大きい(2.0m/千年)(小松原、2006) 饗庭野断層が分布する地域にア スペリティを設定
- 南部:大小2個のアスペリティのうち、平均変位速度が大きい(1.4m/千年)(小松原、2006)
 堅田断層が分布する南側に大き なアスペリティを設定

【破壞開始点】

 北部、南部区間ともに縦ずれ成分 が卓越しているためアスペリテ ィ中央下端に設定

図 5.3.2 モデル平面図(琵琶湖西岸断層帯)

表 5.3.1 断層パラメータ (琵琶湖西岸断層帯)

		設定	定値	
新営業度を(小型)	(北端)北緯35°29′ 東経136°02′	-	-	
例層佈原点(北部)	(南端)北緯35°18′ 東経135°59′	-		
新国業国長(電報)	(北端)北緯35°17′ 東経136°03′	-		
阿唐帝原恩(用部)	(南端) 北緯34°58′ 東経135°54′	-	-	
活断層長さL	北部:約20km,南部:約38km	5	i8	
マグニチュード M	—	7	.8	
巨視的震源パラメータ	設定方法	北部	南部	
断層モデル原点	地中の上端における北端	北緯35.480°	北緯35.303°	
		東経135.993°	東経136.007°	
走向 θ	長期評価の端点を結ぶ方向	N192.0° E	N200.0° E	
傾斜角 δ	「四傾斜」(部):地下約3kmまでは40 、約3-5kmまでは 35°)	45°	35°	
すべり角 γ	「西側隆起の逆断層」	90°	90°	
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	3 km	3 km	
単位区間長さ Lseg	手続き化の方法に従い設定	22 km	40 km	
単位区間幅 Weag	手続き化の方法に従い設定	18 km	18 km	
单位区間面積 S.a.	$S_{\text{corr}} = L_{\text{corr}} \times W_{\text{corr}}$	396 km²	720 k m ²	
新 新	$S_{\text{model}} = \sum_{i} S_{aaa}$	1116	ikm²	
地電モーメント Ma	$\log M_{c} = 1.17 M + 10.72$	6.51E+	-19 Nm	
モーベントマグニチョード M	$M = (\log M_0 - 9.1)/1.5$	0.012	1	
静的広力降下量 Δσ	$\Lambda_{\pi} = -7/16 \cdot M^2/D^3$	4.6	MPa	
正均すべり母 し	$\sum 0 - 1/10^{\circ} M_0 / R$ $D = u = M_0^2 / (u + S = u^2)$	1.0) m	
ーの y の重 D model 毎周期レベル A	$D_{\text{model}} = M_0 / (\mu - S_{\text{model}})$ $A = 2 A f_{e_1} + 10^{10} \cdot (M_{e_1}^2 + 10^7)^{1/3}$	2.0 m 2.18E+10 Nm/s2		
	$M=2.40 \cdot 10^{-1} (M_0 \cdot 10^{-1})$	2.101-1	71 0	
微和的電池パフィータ		//	AL 2	
微視的震源パフメータ	$C = -\frac{2}{2} = 7 - \frac{4}{4} M^2 (4 + D) + 0^2$	366	∧1, 2 1 km²	
微視的震源パフメータ 全アスペリティ面積 Sa 全アスペリティの実効広力 g	$S_{a} = \pi r^{2} r = 7 \pi / 4 \cdot M_{0}' / (A \cdot R) \cdot \beta^{2}$ $\sigma = A \sigma = 7 / 16 \cdot M_{0}' / (r^{2} \cdot R)$	366.4	∧1, 2 4 km² MPa	
微視的震源パフメータ 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パ ²	$S_{a} = \pi r^{2}, r = 7 \pi / 4 \cdot M_{0}' / (A \cdot R) \cdot \beta^{2}$ $\sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_{0}' / (r^{2} \cdot R)$ $\sigma_{a} = - f(A - R) + f$	ックーム 366.4 13.8 北部	A1, 2 4 km ² MPa 南部	
 微視的震源パフメータ 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント Mone 	$S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2$ $\sigma_s = / \sigma_s = 7 / 16 \cdot M_0' / (r^2 \cdot R)$ デメータ 単位区間面積の15乗に比例して配分	7-2 366.4 13.8 北部 2.01E+19 Nm	A1, 2 4 km ² MPa 有部 4 92E+19 Nm	
微視的震源パフメータ 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M _{0seg} 単位区間平均すべり量 D _{coe}	$S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2$ $\sigma_{,=} / \sigma_{,=} 7 / 16 \cdot M_0' / (r^2 \cdot R)$ $\overline{r} \to -9$ 単位区間面積の1.5乗に比例して配分 $D_{con} = M_{0,con} / (\mu \cdot S_{con})$	7-5 366.4 13.8 北部 2.01E+19 Nm 1.7 m	×1, 2 4 km ² MPa 南部 4.92E+19 Nm 2.2 m	
 微視的震源パワメータ 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M_{0seg} 単位区間平均すべり量 D_{seg} 全 面積 S_{a seg} 	$S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2$ $\sigma_{-} = / 1 \sigma_{-} = 7 / 16 \cdot M_0' / (r^2 \cdot R)$ $\bar{\sigma}_{-} > - 9$ 単位区間面積の1.5乗に比例して配分 $D_{sog} = M_{0sog} / (\mu \cdot S_{sog})$ 単位区間面積に比例して配分	7 366 13.8 北部 2.01E+19 Nm 1.7 m 130.0 km ²	A1, 2 4 km ² MPa 有部 4.92E+19 Nm 2.2 m 236.4 km ²	
 微視的震源パワメーダ 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M_{0seg} 単位区間平均すべり量 D_{seg} リ 全 面積 S_a seg リ ア 平均すべり量 D_{aseg} 	$S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2$ $\sigma_{s=} / \sigma_{s} = 7 / 16 \cdot M_0' / (r^2 \cdot R)$ $\overline{\rho}_{S \to -9}$ 単位区間面積の1.5乗に比例して配分 $D_{seg} = M_{0seg} / (\mu \cdot S_{seg})$ 単位区間面積に比例して配分 $D_{n_{seg}} = \gamma_0 \cdot D_{seg}, \gamma_0 = 2.0$	7	A1, 2 4 km ² MPa 4.92E+19 Nm 2.2 m 236.4 km ² 4.5 m	
 微視的震源パワメータ 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M₀seg 単位区間平均すべり量 D_{seg} り	$S_{a} = \pi r^{2}, r=7 \pi / 4 \cdot M_{0}'/(A \cdot R) \cdot \beta^{2}$ $\sigma_{a} = / \sigma_{a} = 7/16 \cdot M_{0}'/(r^{2} \cdot R)$ ダメータ 単位区間面積の1.5乗に比例して配分 $D_{sog} = M_{0sog}/(\mu \cdot S_{sog})$ 単位区間面積に比例して配分 $D_{a sog} = \gamma_{D} \cdot D_{sog}, \gamma_{D} = 2.0$ $\sigma_{a sog} = \sigma_{a}$	7	A1, 2 4 km ² MPa 4.92E+19 Nm 2.2 m 236.4 km ² 4.5 m 13.8 MPa	
 微視的震源パワメーダ 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M₀seg 単位区間平均すべり量 D_{seg} 	$S_{a} = \pi r^{2}, r=7 \pi / 4 \cdot M_{0}'/(A \cdot R) \cdot \beta^{2}$ $\sigma_{a} = / \sigma_{a} = 7/16 \cdot M_{0}'/(r^{2} \cdot R)$ (単位区間面積の1.5乗に比例して配分 $D_{sog} = M_{0sog}/(\mu \cdot S_{sog})$ 単位区間面積に比例して配分 $D_{a sog} = \sigma_{a}$ $M_{0a sog} = \sigma_{a}$ $M_{0a sog} = \mu \cdot D_{a sog} \cdot S_{a sog}$	366 3366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm	A1, 2 4 km ² MPa 4.92E+19 Nm 2.2 m 236.4 km ² 4.5 m 13.8 MPa 3.23E+19 Nm	
微視的震源パワメータ 全アスペリティ面積 S_a 全アスペリティ面積 S_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M_{0seg} 単位区間平均すべり量 D_{seg} リ 全 面積 S_{aseg} テア 平均すべり量 D_{aseg} 北震モーメント M_{0aseg} 水 歯 面積 S_a	$\begin{split} S_a = \pi r^2, r = 7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{J} \sim -9 \\ \hline \Psi dC 区間 面積 (D 1.5 乗に比例して配分) \\ D_{sog} = M_{0seg} / (\mu \cdot S_{seg}) \\ \hline \Psi dC 区間 面積 に比例して配分 \\ D_{a} seg = \sigma_{a} \\ M_{0a} seg = \sigma_{a} \\ M_{0a} seg = \sigma_{a} \\ M_{0a} seg = \mu \cdot D_{a} seg \cdot S_{a} seg \\ \hline S_{a} = S_{a} seg \end{split}$	366 3366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ²	ペ1, 2 4 km ² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km ² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km ²	
(微視的喪源パフメータ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティ面積 S _a 単位区間ごとの微視的震源パラ 単位区間平均すべり量 D _{see} 単位区間平均すべり量 D _{see} リ 全 面積 S _a seg ア 平均すべり量 D _a seg セ度モーメント M _{0a} seg マ 約応力 σ _a seg ペ 第 面積 S _a ッ 第 面積 S _a リ 1 平均すべり量 D _a	$S_{a} = \pi r^{2}, r=7 \pi / 4 \cdot M_{0}'/(A \cdot R) \cdot \beta^{2}$ $\sigma_{a} = / \sigma_{a} = 7/16 \cdot M_{0}'/(r^{2} \cdot R)$ () () () () () () () () () (366 366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m	
(微視的喪源パフメーダ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間平均すべり量 D _{see} 単位区間平均すべり量 D _{see} リ 全 面積 S _a seg ア 平均すべり量 D _a seg セ度モーメント M _{0a} seg ッ 面積 S _a seg 地震モーメント M _{0a} seg ペ第 面積 S _a ッ 東効応力 σ _a seg ・ 第 ・ 第 ・ ア ・ ア ・ ア ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ ア ・ 第 ・ ア ・ 第 ・ 第 ・ ア ・ 第 ・ 第 ・ ア ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ <t< td=""><td>$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{s} = / \sigma_{s} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{s} - \sigma_{s} \\ \hline \Psi \oplus C R H B f a f a 0 1.5 乗 に比例して配分 \\ D_{seg} = M_{0seg} / (\mu \cdot S_{seg}) \\ \hline \Psi \oplus C R H B f a f a C L M U T 配分 \\ D_{a seg} = \sigma_{0} \\ \sigma_{a seg} = \sigma_{a} \\ M_{0a seg} = \mu \cdot D_{a seg} \cdot S_{a seg} \\ \hline S_{a1} = S_{a seg} \\ D_{a1} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_{a seg} \\ \sigma_{a1} = \sigma_{a seg} \end{split}$</td><td>366. 366. 13.8 2.01E+19 Nm 1.7 m 130.0 km² 3.3 m 1.32E+19 Nm 130.0 km² 3.3 m 13.8 MPa 1.32E+19 Nm</td><td>人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa</td></t<>	$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{s} = / \sigma_{s} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{s} - \sigma_{s} \\ \hline \Psi \oplus C R H B f a f a 0 1.5 乗 に比例して配分 \\ D_{seg} = M_{0seg} / (\mu \cdot S_{seg}) \\ \hline \Psi \oplus C R H B f a f a C L M U T 配分 \\ D_{a seg} = \sigma_{0} \\ \sigma_{a seg} = \sigma_{a} \\ M_{0a seg} = \mu \cdot D_{a seg} \cdot S_{a seg} \\ \hline S_{a1} = S_{a seg} \\ D_{a1} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_{a seg} \\ \sigma_{a1} = \sigma_{a seg} \end{split}$	366. 366. 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa	
微視的震源パワメーダ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間単均すべり量 D _{see} リ 全 面積 S _a seg ア 平均すべり量 D _a seg ペ 第 面積 S _a マカすべり量 D _a seg ペ 第 面積 S _a マカす の量 D _a seg ペ 第 面積 S _a マカす ストト M _{0a} seg ペ 第 面積 S _a マカす ストト M _{0a} seg ペ 第 面積 S _a オ ス 計算用面積	$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{s=} / \sigma_{s} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{J} - \sigma_{J} \\ \hline \Psi \oplus \nabla E \Pi m \overline{a} \overline{a} 0 1.5 \oplus clt 例 \cup \tau \overline{cl} \mathcal{H} \\ D_{seg} = M_{0seg} / (\mu \cdot S_{seg}) \\ \hline \Psi \oplus \nabla E \Pi m \overline{a} \overline{c} clt \mathcal{H} \\ O_{a seg} = \sigma_{D seg} , \gamma_D = 2.0 \\ \sigma_{a seg} = \sigma_{a} \\ M_{0a seg} = \mu \cdot D_{a seg} \cdot S_{a seg} \\ S_{al} = S_{a seg} \\ D_{al} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_{a seg} \\ \sigma_{al} = \sigma_{a seg} \\ 2 km \neq \gamma > 2 \# \mathcal{H} $	リーニ 366 13.8 北部 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 1.3.8 MPa 1.3.8 MPa 1.44 km ²	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km²	
微視的震源パワメーダ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M _{0seg} 単位区間平均すべり量 D _{seg} リ 全 面積 S _a seg ア 平均すべり量 D _a seg ペ第 面積 S _a マカすべり量 D _a マカすべり量 D _a オカすべり量 D _a オカす A a b a b a b a b a b a b a b a b a b a	$\begin{split} S_a = \pi r^2, r = 7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{J} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline p_{J} = 0 \\ \hline p_{J$	366. 366. 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 13.8 MPa 13.8 MPa 13.8 MPa 144 km ² -	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km²	
依視的慶源パワメーダ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間単均マペり量 D _{see} 単位区間平均すべり量 D _{see} リ 全 面積 S _a seg マ 平均すべり量 D _a seg ペ 第 面積 S _a マ 地震モーメント M _{0a} seg ペ 第 面積 S _a リ 1 平均すべり量 D _a オ S _a オ S _a オ S _a マ 実効応力 σ _a オ S _a オ S _a マ 要対すべり量 D _a オ S _a オ S _a マ 要対すべり量 D _a マ = 1 ロ = 1 マ = 1 ロ = 1 ロ = 1 ロ = 1	$S_{a} = \pi r^{2}, r=7 \pi / 4 \cdot M_{0}'/(A \cdot R) \cdot \beta^{2}$ $\sigma_{a} = / \sigma_{a} = 7/16 \cdot M_{0}'/(r^{2} \cdot R)$ () () () () () () () () () (366 366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 13.8 MPa 144 km ² 	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m	
微視的喪源パフメーダ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間単均でり量 D _{see} リ 全 面積 S _a seg マ 平均すべり量 D _a seg マ 次 対応力 σ _a seg ペ 第 面積 S _a マ 加震モーメント M ₀ a seg ペ 第 面積 S _a マ 加震モーメント M ₀ a seg ペ 第 面積 S _a マ 加速電 ス マ 東切すべり量 D _a マ ス 実効応力 σ _a seg マ ア 東効応力 σ _a マ 加震モーメント M ₀ a seg ペ 第 面積 S _a マ 知すでり量 D _a マ 実効応力 σ _a マ 実効応力 σ _a マ 実効応力 σ _a マ 実効応力 σ _a マ テ ア 実効応力 σ _a マ 和 す のり量 D _a マ ア 対す のり量 D _a マ ア 支効応力 σ _a マ ア 実効応力 σ _a マ ア 支効応力 σ _a マ ア 支効応力 σ _a マ ア ス マ ア ア マ ア ス マ ア ス マ ア ス マ ア ア マ ア ス マ ア ア マ ア ア マ ア ア マ ア ア マ ア ア マ ア	$\begin{split} S_a = \pi r^2, r = 7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{J} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline p_{J} = 0 \\ \hline p_{J$	366 366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa	
微視的喪源パフメーダ 全アスペリティ面積 S _a 全アスペリティ面積 S _a 全アスペリティの実効応力 σ _a 単位区間ごとの微視的震源パラ 単位区間単均でり量 D_{see} 単位区間単均でり量 D_{see} リ 全 面積 S _a seg ア 平均すべり量 D_{a} seg プ ア 切すっり量 D_{a} seg ペ 第 面積 S _a マ 切すでり量 D_{al} ア 実効応力 σ_{a} 当前者 S _a マ 切すでり量 D_{al} ア 実効応力 σ_{al} オ 対す不り量 D_{al} ア 実効応力 σ_{al} オ 新算用面積 ペ 第 面積 S _a ア 実効応力 σ_{a2} マ オ ス 計算用面積 ペ 第 声積 月間面積	$\begin{split} S_a = \pi r^2, r = 7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{J} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \rho_{J} = 0 \\ \hline p_{J} = 0 \\ \hline p_{J$	366 366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 80 km²	
徽 限的 喪源パワメーダ 全アスペリティ面積 S_a 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間 地震モーメント M_{0seg} 単位区間 平均すべり量 D_{seg} リ 全 面積 S_a seg フ ア 平均すべり量 D_a seg プ ア 平均すべり量 D_a seg プ ア 邦均すべり量 D_a seg プ ア 邦均すべり量 D_a オ 新 面積 S_a リ 1 平均すべり量 D_{a1} テア 実効応力 σ_{a1} イ ス 計算用面積 ペ第 面積 S_a ア 平均すべり量 D_{a2} テア 実効応力 σ_{a2} オ 新 面積 S_b	$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{3} = -9 \\ \hline \Psi \det \mathbb{E} \Pi \overline{m} \overline{a} \overline{b} \overline{a} \overline{b} \overline{c} \overline{c} \overline{c} \overline{m} \overline{b} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} c$	366 366 13.8 北部 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 243.1 km ²	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 80 km² 472.5 km²	
徽 限的 喪源パワメーダ 全アスペリティ面積 S_a 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間 地震モーメント M_{0seg} 単位区間 平均すべり量 D_{seg} リ 全 面積 S_a seg フ ア 平均すべり量 D_a seg プ ア 平均すべり量 D_a seg プ ア 邦均すべり量 D_a seg プ ア 邦均すべり量 D_a オ 新 面積 S_a リ 1 平均すべり量 D_{a1} テア 実効応力 σ_{a1} オ 計算用面積 ペ第 面積 S_a 関 力す S_a ア ア ブ ガリオのり量 D_{a2} テア 実効応力 σ_{a2} オ 新 面積 S_b ア ア ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ ブ	$\begin{split} S_{a} = \pi r^{2}, r = 7 \pi / 4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2} \\ \sigma_{z} = / \sigma_{z} = 7 / 16 \cdot M_{0} / (r^{2} \cdot R) \\ \hline \sigma_{z} = / \sigma_{z} = 7 / 16 \cdot M_{0} / (r^{2} \cdot R) \\ \hline \rho_{z} = M_{0} = 0 / (\mu \cdot S_{seg}) \\ \hline \Psi \det \mathbb{E} \Pi \overline{m} \overline{a} [t \mathbb{E} M \ U \subset \overline{m} f \rangle \\ D_{a} = g = M_{0} = 0 / (\mu \cdot S_{seg}) \\ \hline \Psi \det \mathbb{E} \Pi \overline{m} \overline{a} [t \mathbb{E} M \ U \subset \overline{m} f \rangle \\ D_{a} = g = \gamma_{D} \cdot D_{seg}, \gamma_{D} = 2.0 \\ \sigma_{a} = g = \sigma_{a} \\ M_{0a} = \sigma_{a} = \sigma_{a} \\ M_{0a} = \sigma_{a} = 0 / (\mu \cdot D_{a} seg \cdot S_{a} seg \\ S_{a1} = S_{a} seg \\ D_{a1} = (\gamma_{1} / \Sigma \gamma_{1}^{3}) \cdot D_{a} seg \\ \sigma_{a1} = \sigma_{a} seg \\ 2 \mathbb{E} m \neq \nu > \omega \pm \eta / \vec{X} \\ S_{a2} = S_{a} seg \cdot (1/3) \text{ or } 0 \\ D_{a2} = (\gamma_{2} / \Sigma \gamma_{1}^{3}) \cdot D_{a} seg \\ \sigma_{a2} = \sigma_{a} seg \\ 2 \mathbb{E} m \neq \nu > \omega \pm \eta / \vec{X} \\ S_{b} = S_{seg} - S_{a} seg \\ D_{b} = M_{0b} / (\mu \cdot S_{b}) \end{split}$	ッシー、 366.4 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 243.1 km ² 0.9 m	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 80 km² 472.5 km² 1.2 m	
徽 限的 喪源パワメーダ 全アスペリティ面積 S_a 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間 地震モーメント M_{0seg} 単位区間 平均すべり量 D_{seg} リ 全 面積 S_a seg フ 平均すべり量 D_{aseg} マ 均すべり量 D_{aseg} マ 均すべり量 D_{aseg} マ 均すべり量 D_{al} テア 実効応力 σ_{al} イス 計算用面積 ペ第 面積 S_{a2} リ 2 平均すべり量 D_{a2} テア 実効応力 σ_{a2} 計算用面積 間積 S_b 平均すべり量 D_{b} 実効応力 σ_{b}	$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{3} = -9 \\ \hline \psi \det \mathbb{Z} \Pi \text{ 面積} \oplus 1.5 \oplus (ith \emptyset \cup \tau end) \\ D_{aseg} = M_{0seg} / (\mu \cdot S_{seg}) \\ \hline \psi \det \mathbb{Z} \Pi \text{ 面積} ith (\psi \cup \tau end) \\ D_{a seg} = \gamma_D \cdot D_{seg}, \gamma_D = 2.0 \\ \sigma_{a seg} = \sigma_a \\ M_{0a seg} = \mu \cdot D_{a seg} \cdot S_{a seg} \\ \hline S_{a1} = S_{a seg} \\ D_{a1} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_{a seg} \\ \sigma_{a1} = \sigma_{a seg} \\ 2km \times \gamma : \rightarrow \psi + \mathcal{I} \\ S_{a2} = S_{a seg} \cdot (1/3) \text{ or } 0 \\ D_{a2} = (\gamma_2 / \Sigma \gamma_1^3) \cdot D_{a seg} \\ \sigma_{a2} = \sigma_{a seg} \\ 2km \times \gamma : \rightarrow \psi + \mathcal{I} \\ \hline S_{b} = S_{seg} - S_{a seg} \\ D_b = M_{0b} / (\mu \cdot S_b) \\ \sigma_b = (D_b / W_{b seg}) \cdot (\pi^{1/2} / D_{a seg}) \cdot r \cdot \Sigma \gamma_1^3 \cdot \sigma_a \end{split}$	366 366 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 243.1 km ² 0.9 m 2.4 MPa	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 80 km² 472.5 km² 1.2 m 2.3 MPa	
微視的震源パワメーダ 全アスペリティ面積 S_a 全アスペリティ面積 S_a 全アスペリティの実効応力 σ_a 単位区間ごとの微視的震源パラ 単位区間地震モーメント M_{0seg} 単位区間平均すべり量 D_{seg} リ 全 面積 S_a seg ア 平均すべり量 D_{aseg} マ 車樹積 S_a seg アス 実効応力 σ_a seg 地震モーメント M_{0aseg} ペ第 面積 S_{a1} リ1 平均すべり量 D_{a1} アブ 実効応力 σ_{a1} イス 計算用面積 電積 S_a 2 リ2 平均すべり量 D_{a2} アデア 実効応力 σ_{a2} オス 計算用面積 面積 S_b 平均すべり量 D_b 実効応力 σ_b 実効応力 σ_b	$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{a} = / \sigma_{a} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{3} = - 9 \\ \hline \psi \det \mathbb{Z} \Pi \text{ 面積} \oplus 0.5 \Re(ikt) \# (ikt) \oplus (ikt) \oplus$	366 366 13.8 北部 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 243.1 km ² 0.9 m 2.4 MPa 6.89E+18 Nm	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 80 km² 472.5 km² 1.2 m 2.3 MPa 1.69E+19 Nm	
微視的震源パワメーダ 全アスペリティ面積 S_a 全アスペリティ面積 S_a 全アスペリティ面積 S_a 全区間ごとの微視的震源パラ 単位区間ごとの微視的震源パラ 単位区間地震モーメント M_{0seg} 単位区間平均すべり量 D_{seg} リ 全 面積 S_a seg アア 平均すべり量 D_{aseg} マ、 第 面積 S_a リ 1 平均すべり量 D_{a1} テア 実効応力 σ_{a1} イス 計算用面積 ペ第 面積 S_{a2} リ 2 平均すべり量 D_{a2} デア 実効応力 σ_{a2} 計算用面積 電積 S_b 平均すべり量 D_b 実効応力 σ_b リ 2 平均すべり量 D_b 実効応力 σ_b 単位区市積 S_b 単位 S_b ア 実効応力 σ_b 地積 S_b 単方 (N) 量 D_b 実効応力 σ_b 単方 (N) 量 D_b 東効応力 σ_b 単方 (N) 量 D_b 東前 (D) 貴	$\begin{split} S_a = \pi r^2, r=7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2 \\ \sigma_{=} - \Delta \sigma_{=} = 7 / 16 \cdot M_0' / (r^2 \cdot R) \\ \hline \sigma_{>} - \sigma_{>} \\ \hline \Psi \oplus \mathbb{Z} \ \Pi \ \overline{m} \ \overline{a} \ \overline{b} \ \overline{c} \ $	ッシー、 366.4 13.8 2.01E+19 Nm 1.7 m 130.0 km ² 3.3 m 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 1.32E+19 Nm 130.0 km ² 3.3 m 13.8 MPa 144 km ² 243.1 km ² 0.9 m 2.4 MPa 6.89E+18 Nm 252 km ²	人1, 2 4 km² MPa 南部 4.92E+19 Nm 2.2 m 236.4 km² 4.5 m 13.8 MPa 3.23E+19 Nm 157.6 km² 4.9 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 168 km² 78.3 km² 3.5 m 13.8 MPa 168 km² 78.8 km² 3.5 m 13.8 MPa 80 km² 472.5 km² 1.2 m 2.3 MPa 1.669E+19 Nm 472 km²	

38

(2) 花折断層帯(中南部: J-SHIS モデル準拠)

【想定活動区間】

・ 中部区間と南部区間を一括した「中南部」として活動区間を想定

【モデル地表トレース位置・形状】

- ・ 中部:北端を花折断層における花折峠とし、南端を花折断層の南端に設定
- 南部:北端を銀閣寺・南禅寺断層の北端とし、南端を黄檗断層群の南端に設定
- 【モデル傾斜角】
- 中部では横ずれ断層を主体としていることやトレンチ調査結果などから 90° とし、南部では 断層露頭、トレンチ調査、ボーリング調査、反斜法弾性波探査結果などから 50°の東傾斜と 設定
- 【アスペリティの個数・位置】
- ・ 中部および南部ともにそれぞれ区間中央に1つずつ設定

【破壞開始点】

- ・ 中部は横ずれが卓越していることからアスペリティ下端の左右端とし、そのうち J-SHIS での震度6弱以上の曝露人口が多いケース(case2)とする
- ・ 南部は縦ずれ成分が卓越することからアスペリティ中央下端とする

図 5.3.3 モデル平面図(花折断層帯(中南部))

表 5.3.2 断層パラメータ(花折断層帯(中南部))

		長期評価	設定値		
w.园.世.百.	与(中部)	(北端)北緯35°11′ 東経135°52′	-	-	
町	以(中部)	(南端) 北緯35°01′ 東経135°47′	-		
		(北端) 北緯35°02′ 東経135°48′	-	-	
) 断僧	点(南部)	(南端) 北緯34°53′ 東経135°49′		-	
活断層長る	≜ L	中部:約20km,南部:約15km	35	km	
マグニチュ	ド M	7.3程度	7	.4	
巨視的震波	原パラメータ	設定方法	中部	南部	
Mr R		地中の上端における北端(中部)	北緯35.183°	北緯34.890°	
断増モア/	レ原点	地中の上端における南端(南部)	東経135.867°	東経135.825°	
走向 θ		長期評価の端点を結ぶ方向	N202.3° E	N354.8° E	
傾斜角 δ		「ほぼ垂直」/「東傾斜50°程度」	90°	50°	
すべり角・	y	「右横ずれ断層」/「南東側隆起の逆断層」	180°	90°	
断層モデノ	レ上端深さ	微小地震の発生と地震基盤深さを参考	1 km	1 km	
単位区間:	長さ L _{seg}	手続き化の方法に従い設定	22 km	16 km	
単位区間	畐 W _{seg}	手続き化の方法に従い設定	18 km	18 km	
単位区間に	面積 S _{seg}	$S_{\text{seg}} = L_{\text{seg}} \times W_{\text{seg}}$	396 k m ²	288 k m²	
断層モデノ	レ総面積 S _{model}	$S_{\text{model}} = \sum S_{\text{seg}}$	684 km ²		
地震モーン	ペント M ₀	$\log M_0 = 1.17 M + 10.72$	2.43E+19 Nm		
モーメント・	マグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1)/1.5$	6.9		
静的応力降	降下量 ⊿σ	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.3	3 MPa	
平均すべり)量 D _{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	m		
短周期レイ	ベル A	$A=2.46\cdot 10^{10}\cdot (M_0\cdot 10^7)^{1/3}$	1.54E+19 Nm/s2		
微視的震波	原パラメータ		ケージ	ス2,3	
全アスペリ	ティ面積 S _a	$S_a = \pi r^2$, $r = 7 \pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	145.3	3 km²	
全アスペリ	ティの実効応力 σ 。	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	15.6 MPa		
単位区間:	ごとの微視的震源パラ	ラメータ	中部	南部	
単位区間」	也震モーメント M _{0seg}	単位区間面積の1.5乗に比例して配分	1.50E+19 Nm	9.31E+18 Nm	
単位区間3	平均すべり量 D _{seg}	$D_{\text{seg}} = M_{0 \text{seg}} / (\mu \cdot S_{\text{seg}})$	1.2 m	1.0 m	
,,全面	積 S _{a seg}	単位区間面積に比例して配分	84 km ²	61 k m ²	
リア 平	均すべり量 D _{a seg}	$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	2.4 m	2.0 m	
イス実	劾応力 σ _{a seg}	$\sigma_{a \text{ seg}} = \sigma_{a}$	15.6 MPa	15.6 MPa	
べ地	震モーメント M _{0a seg}	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	6.30E+18 Nm	3.82E+18 Nm	
ペ第面	積 S _{al}	-	84.1 km ²	61.2 km²	
リ1 平	均すべり量 Dal	-	2.4 m	2.0 m	
テア実	劾応力 σ _{al}	-	15.6 MPa	15.6 MPa	
イス計	算用面積	2kmメッシュサイズ	80 k m²	60 k m ²	
面	積 S _b	$S_{\rm b} = S_{\rm seg} - S_{\rm a seg}$	311.9 km²	226.8 km²	
青 平	均すべり量 Db	$D_{\rm b}=M_{0\rm b}/(\mu \cdot S_{\rm b})$	0.9 m	0.8 m	
「「」」「実	劾応力 σ b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b seg}) \cdot (\pi^{1/2}/D_{\rm a seg}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	3.0 MPa	2.7 MPa	
域地	震モーメント M _{0b}	$M_{0b}=M_{0seg}-M_{0aseg}$	8.72E+18 Nm	5.49E+18 Nm	
計	算用面積	2kmメッシュサイズ	316.0 km ²	228.0 km ²	

Ŀ,

-

н

(3) 木津川断層帯(J-SHIS モデル準拠)

【想定活動区間】

断層帯全体で1区間として設定

【モデル地表トレース位置・形状】

- ・ 区間の端点(北東端と南西端)を結ぶ設定
- ・ 北東端を伊賀断層の北東端とし、南西端を島ヶ原断層の南西端に設定
- 【モデル傾斜角】
- ・ 断層露頭やトレンチ調査結果から 50°の北傾斜と設定
- 【アスペリティの個数・位置】
- 大小2個のアスペリティをバランス良く配置しつつ東部・西部で大小のアスペリティを入れ
 替えたケースを設定

【破壞開始点】

 縦ずれが卓越していることからアスペリティ中央下端とし、そのうち J-SHIS での震度 6 弱 以上の曝露人口が多い 2 ケース(case1 および case3)とする

図 5.3.4 モデル平面図(木津川断層帯)

表 5.3.3 断層パラメータ (木津川断層帯)

		設定値
新國黨直內	(北端)北緯34°51′ 東経136°16′	-
四1官市/示示	(南端) 北緯34°45′ 東経135°56′	-
活断層長さL	約31km	31 km
マグニチュード M	7.3程度	7.3
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北端	北緯 34.857°
		東経 136.264°
走向 θ	長期評価の端点を結ぶ方向	N250.0° E
傾斜角 δ	「40-60°北傾斜」	50°
すべり角 γ	「北側隆起の逆断層」	90°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	1 km
断層モデル長さ L _{seg}	手続き化の方法に従い設定	32 km
断層モデル幅 W _{seg}	手続き化の方法に従い設定	18 km
断層モデル総面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	576 km²
地震モーメント M0	$\log M_0 = 1.17 M + 10.72$	1.92E+19 Nm
モーメントマグニチュード Mw	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.8
静的応力降下量 ⊿σ	$\Lambda \sigma = 7/16 \cdot M_0/R^3$	3.4 MPa
平均すべり量 D _{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.1 m
短周期レベル A	$A=2.46 \cdot 10^{10} \cdot (M_0 \cdot 10^7)^{1/3}$	1.42E+19 Nm/s2
微視的震源パラメータ		ケース1,3
、全面積 Saseg	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	128.7 km^2
リー ニア 平均すべり量 Daseg	$D_{a} = \gamma_{D} \cdot D_{model}, \gamma_{D} = 2.0$	2.2 m
プス _イ ス 実効応力 σ _{a seg}	$\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0}/(r^{2} \cdot R)$	15.2 Mpa
' ^ペ 地震モーメント M _{0a seg}	$M_{0a} = \mu \cdot D_a \cdot S_a$	8.84E+18 Nm
ペ 第 面積 Sal	$S_{a1}=S_{a} \cdot (2/3)$	85.8 km ²
リ 1 平均すべり量 D _{al}	$D_{a1} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_a$	2.4 m
テア 実効応力 σ _{al}	$\sigma_{a1} = \sigma_{a}$	15.2 MPa
イス計算用面積	2kmメッシュサイズ	80 km ²
ペ 笛 面積 Sa2	$S_{a2} = S_a \cdot (1/3)$	42.9 km^2
リ 2 平均すべり量 Da2	$D_{a^2} = (\gamma_2 / \Sigma_i \gamma_i^3) \cdot D_a$	1.7 m
テア 実効応力 σ _{a2}	$\sigma_{a2} = \sigma_{a}$	15.2 MPa
イス計算用面積	2kmメッシュサイズ	48 km^2
面積 S _b	$S_{\rm b}=S_{\rm model}-S_{\rm a}$	447.3 km^2
背 平均すべり量 D _b	$D_{\rm b}=M_{\rm 0b}/(\mu \cdot S_{\rm b})$	0.7 m
景 実効応力 σ h	$\sigma_{\mathbf{k}} = (D_{\mathbf{k}}/W_{\mathbf{k}}) \cdot (\pi^{1/2}/D_{\mathbf{k}}) \cdot r \cdot \Sigma \gamma_{\mathbf{k}}^{3} \cdot \sigma_{\mathbf{k}}$	2.2 MPa
領 城 地震モーメント Mob	$M_{0b} = M_0 - M_{0a}$	1.04E+19 Nm
計算用面積	2kmメッシュサイズ	448 km^2

E 0, 5

5	31km	0.5 W	<u>.</u>
	$S_{a} = 85.8 \text{ km}^{2}$ (10)km×8km) $\sigma_{a} = 15.2 \text{ JPa}$ $D_{a} = 2.4 \text{ m}$ $\mathcal{T} - \mathcal{T} 1$	$S_{a} = 42.9$ km ² (Skm×Gaa) $\sigma_{a} = 15.2$ kPa $D_{a} = 1.7$ m $D_{a} = 1.7$ m $D_{a} = 1.7$ m	1.31km (断層面 上の距離) 18km (断層面 上の距離)
	32km		

W	E 0 5			31k	m	Q.
1.31km (断層面 上の距離)	Ħ					
18km (断層面 上の距離)		$S_a = 42$ (8km× $\sigma_a = 15$ $D_a = 1$.9 km² 6km) 5.2 MPa .7 m		$S_a = 85.8 \text{ km}^2$ (10 km×8km) $\sigma_a = 15.2 \text{ MPa}$ $D_a = 2.4 \text{ m}$	
	σ _b = D _b =	2.2 MPa 0.7 m			ケース3	
				32km		

0.5

(4) 鈴鹿西縁断層帯

【モデル地表トレース位置・形状】

 水本ほか(2012)による愛荘町付近での明瞭な地形変位が確認された新知見を踏まえ、前面 (滋賀県寄り)に張り出す形状とし、さらに断層帯を構成する断層の地表トレースに忠実な モデル設定となるよう東近江市東方で折れ曲がる2区間(北部及び南部)として設定

【想定活動区間】

・ 断層の地表形態・種類(北部・南部ともに東側隆起の逆断層)から、北部および南部区間が 同時に活動するものとして設定

【モデル傾斜角】

・ 断層変位地形の特徴や吾妻ほか(2000)による反射法弾性波探査結果から 35°の東傾斜と設定

【アスペリティ個数・位置】

- ・ 北部は断層長さが 25km 以下であるためアスペリティ 個数を 1 個とし、位置については愛荘 町にて明瞭な地形変位(約 3m)が確認された新知見(水本ほか、2012)を踏まえ区間南寄 りにアスペリティを設定
- ・ 南部は断層長さが 25km 以下であるためアスペリティ個数を1個とし、区間中央付近に設定 【破壊開始点】
- 北部・南部区間ともに縦ずれ成分が卓越しているためアスペリティ中央下端に設定する。

図 5.3.5 モデル平面図(鈴鹿西縁断層帯)

表 5.3.4 断層パラメータ (鈴鹿西縁断層帯)

		設定	官値	
	(北端)北緯35°19′ 東経136°16′	-	-	
断層帯原点	(屈曲点) 北緯35°07′ 東経136°17′	-	-	
	(南端)北緯34°55′ 東経136°21′	-		
活断層長さ L	北部:約24km,南部:約22km	46	km	
マグニチュード M	7.6程度	7	.6	
巨視的震源パラメータ	設定方法	北部	南部	
断層モデル原点	地中の上端における屈曲点	北緯35 東経13	5.109° 6.287°	
走向 θ	長期評価の端点を結ぶ方向	N355.0° E	N344.0° E	
傾斜角 δ	「30-40°東傾斜」	35°	35°	
すべり角 γ	「東側隆起の逆断層」	90°	90°	
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	1 km	1 km	
単位区間長さ Lseg	手続き化の方法に従い設定	26 km	24 km	
単位区間幅 Wseg	手続き化の方法に従い設定	18 km	18 km	
単位区間面積 Ssee	$S_{\text{seg}} = L_{\text{seg}} \times W_{\text{seg}}$	468 km²	432 km²	
断層モデル総面積 Smodel	$S_{\text{model}} = \sum S_{\text{seg}}$	900	km²	
地震モーメント Mo	$\log M_0 = 1.17 M + 10.72$	4.14E+	-19 Nm	
モーメントマグニチュード Mw	$M_{\rm w} = (\log M_0 - 9.1)/1.5$	7	.0	
重複除去の断層面積 Smodel	_	835.3	3 km²	
重複除去の地震モーメント Mo	_	3.88E+	-19 Nm	
静的応力降下量 /σ	$\sqrt{\alpha} = 7/16 \cdot M_0^2 / R^3$	3.9 MPa		
平均すべり量 D _{model}	$D_{\text{model}} = M_0^{\prime} / (\mu \cdot S_{\text{model}})^{\prime}$	1.5 m		
短周期レベル A	$A=2.46\cdot10^{10}\cdot(M_0^{\prime}\cdot10^7)^{1/3}$	1.79E+19 Nm/s2		
微視的震源パラメータ		ケーン	×1, 2	
全アスペリティ面積 Sa	$S_{\bullet} = \pi r^2 \cdot r = 7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2$	221.7	7 km²	
全アスペリティの実効応力 σ。	$\sigma_{e} = \sqrt{\sigma_{e}} = 7/16 \cdot M_{e}^{2} \cdot (r^{2} \cdot R)$	14.8	MPa	
単位区間ごとの微視的震源パラ	デメータ	北部	南部	
単位区間地震モーメント Moseg	単位区間面積の1.5乗に比例して配分	2.06E+19 Nm	1.82E+19 Nm	
単位区間平均すべり量 D _{seg}	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	1.5 m	1.4 m	
全 面積 Sa seg	単位区間面積に比例して配分	115.4 km ²	106.3 km²	
リニ ア 平均すべり量 Da seg	$D_{\text{a seg}} = \gamma_{\text{D}} \cdot D_{\text{seg}}, \gamma_{\text{D}} = 2.0$	3.0 m	2.8 m	
ア ス 実効応力 σ _{a seg}	$\sigma_{a \text{ seg}} = \sigma_{a}$	14.8 MPa	14.8 MPa	
ペ 地震モーメント Moa seg	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	1.04E+19 Nm	9.23E+18 Nm	
ペ 第 面積 Sal	$S_{a1}=S_{a seg}$	115.4 km²	106.3 km²	
リ 1 平均すべり量 D _{a1}	$D_{a1} = (\gamma_1 / \Sigma_1 \gamma_1^3) \cdot D_{aseg}$	3.0 m	2.8 m	
テア 実効応力 σ _{al}	実効応力 σ_{a1} $\sigma_{al} = \sigma_{aseg}$		14.8 MPa	
イス計算用面積	2kmメッシュサイズ	120 k m ²	120 km²	
面積 S _b	$S_{\rm b} = S_{\rm seg} - S_{\rm a seg}$	321.0 km ²	292.6 km ²	
背 平均すべり量 D _b	$D_{\rm b}=M_{\rm 0b}/(\mu \cdot S_{\rm b})$	1.0 m	1.0 m	
京 毎 実効応力 σ b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b seg}) \cdot (\pi^{1/2}/D_{\rm a seg}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	3.0 MPa	3.1 MPa	
版 城 地震モーメント Mob	$M_{0b}=M_{0seg}-M_{0aseg}$	1.02E+19 Nm	8.98E+18 Nm	
計算用面積	2kmメッシュサイズ	336 k m ²	300 km²	

(5) 柳ケ瀬・関ヶ原断層帯(主部南部・中部連動)

【想定活動区間】

・ 断層の地表形態・種類から、中部および南部区間が同時に活動するものとして設定 【モデル地表トレース位置・形状】

- ・ 断層帯を構成する断層の地表トレースに忠実なモデル設定とし、木之本町付近で折れ曲がる 2区間と設定
 - ・ 北端: 柳ヶ瀬断層の北端に設定
 - ・ 屈曲点: 柳ヶ瀬断層の南端に設定
 - ・ 南端:関ヶ原断層の南端に設定

【モデル傾斜角】

- ・ 横ずれを主体する断層帯であることとトレンチ調査結果や地形から判断し 90°と設定
- 【アスペリティの個数・位置】
- ・ 中部区間および南部区間ともに大小 2 個のアスペリティをバランス良く配置し、長浜市付近 に大きなアスペリティを設定

【破壞開始点】

・ 中部・南部ともに横ずれ成分が卓越しているためアスペリティ下端の左右端に設定

図 5.3.6 モデル平面図(柳ヶ瀬・関ヶ原断層帯)

表 5.3.5 断層パラメータ(柳ヶ瀬・関ヶ原断層帯)

		設定	官値	
	(北端)北緯35°45′ 東経136°09′	-	-	
断層帯原点	(屈曲点) 北緯35°30′ 東経136°14′	-		
	(南東端) 北緯35°21′ 東経136°31′	-		
活断層長さL	中部:約28km,南部:約30km	58	km	
マグニチュード M	7.8程度	7.	.8	
巨視的震源パラメータ	設定方法	中部	南部	
		北緯35	.502°	
断層モデル原点	地中の上端における屈曲点	東経13	6.236°	
走向 θ	長期評価の端点を結ぶ方向	N342.0° E	N301.0° E	
値斜角 δ	中部・「ほぼ垂直」/南部・「ほぼ垂直」	90°	90°	
すべり鱼ッ	中部・「左構ずれ、断層」/南部・「左構ずれ、断層」	0°	0°	
新属モデルト端深さ	御小地電の発生と地震其般深さを参考	2 km	2 km	
単位区間長さ1	毛続き化の古法に従い設定	22 km	24 km	
半世区間段C 250g	手続き化の方法に従い設定	16 km	16 km	
半位区間電港 C	$C = I \rightarrow W$	512 km^2	544 km^2	
半世区向面損 Useg	$S_{\text{seg}} = L_{\text{seg}} \times V_{\text{seg}}$	512 KIII 1056	lum ²	
的層でノル応面積 Smodel 地震エー むん M	$S_{\text{model}} = \Delta S_{\text{seg}}$	6 51 54	10 Nm	
地長モーノント M0	$\log M_0 - 1.17M + 10.72$ $M = (\log M_0 - 0.1)/1.5$	0.31E+ 7	1	
モーバンドマクニノユート Mw 重複除土の断層面積 c ,	// _W -(log/W ₀ -9.1)/ 1.5	1056	$0 km^2$	
重後际云の即層面積 Smodel 重複除土の地震エーン AM		1056.0 km		
重陵原云の地長モーノンドM0 熱的広力略工具 4		0.01E+	19 MII	
静的応力降下重 Δσ	$\sum \sigma = \frac{1}{16} \cdot \frac{M_0}{K}$	4.4 MPa		
平均g へり重 D _{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.9 m		
	$A=2.46 \cdot 10^{10} \cdot (M_0' \cdot 10')^{1/6}$	2.10E+19 Nm/s2		
個代的長源ハフメータ ヘマス・2015、天林 C		<u> </u>	<1, Z	
全アスヘリティ面積 Sa	$S_a = \pi r^2, r = 7 \pi / 4 \cdot M_0' / (A \cdot R) \cdot \beta^2$	357.8	3 km	
全アスペリティの実効応力 σ a	$\sigma_a = 2 \sigma_a = 7/16 \cdot M_0'/(r^2 \cdot R)$	13.7	MPa =======	
単位区間ことの微視的展調へ		甲部	円 判 ○ 10日 10 N	
単位区間地震モーメント Moseg	単位区間面積の1.5来に比例して配分	3.11E+19 Nm	3.40E+19 Nm	
単位区間平均すべり量 D _{seg}	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	1.9 m	2.0 m	
	単位区間面積に比例して配分	173.5 km	184.3 km	
ティーン 中均すべり量 Daseg	$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	3.9 m	4.0 m	
イ イ ペ リ ス の a seg	$\sigma_{a \text{ seg}} = \sigma_{a}$	13.7 MPa	13.7 MPa	
地震モーメント Moa seg	$M_{0a seg} = \mu \cdot D_{a seg} \cdot S_{a seg}$	2.11E+19 Nm	2.31E+19 Nm	
ペ第 面積 Sal	$S_{a1}=S_{a \text{ seg}} \cdot (2/3)$	115.7 km²	122.9 km²	
リ 1 半均すべり量 D _{al}	$D_{\rm a1} = (\gamma_1 / \Sigma \gamma_i^{\rm s}) \cdot D_{\rm a seg}$	4.2 m	4.5 m	
アア 実効応力 σ_{a1}	$\sigma_{a1} = \sigma_{a \text{ seg}}$	13.7 MPa	13.7 MPa	
1 个 計算用面積	2kmメッシュサイズ	100 km²	144 km²	
ペ 第 面積 Sa2	$S_{a2} = S_{a \text{ seg}} \cdot (1/3)$	57.8 km²	61.4 km²	
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_{a \text{ seg}}$	3.0 m	3.2 m	
アア 実効応力 σ_{a2}	$\sigma_{a2} = \sigma_{aseg}$	13.7 MPa	13.7 MPa	
1 1 計算用面積	2kmメッシュサイズ	64 k m ²	64 km ²	
面積 S _b	$S_{\rm b} = S_{\rm seg} - S_{\rm a seg}$	338.5 k m ²	359.7 km²	
月 平均すべり量 D _b	$D_{\rm b}=M_{\rm 0b}/(\mu \cdot S_{\rm b})$	0.9 m	1.0 m	
一 実効応力 σ b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b seg}) \cdot (\pi^{1/2}/D_{\rm a seg}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.1 MPa	2.1 MPa	
域 地震モーメント Mob	$M_{0b}=M_{0seg}-M_{0aseg}$	1.00E+19 Nm	1.10E+19 Nm	
計算用面積	2kmメッシュサイズ	348 km²	336 km²	

⁵ <u>4.0</u>	30km		28km	4.0	N GL 9
$ \sigma_{s} = 2, 1 \text{ MPR} $ $ \rho_{s} = 1, 0 \text{ m} $ $ S_{s} = 61, 4 $ $ (8km \times 8km \\ \sigma_{s} = 13, 7 $ $ \rho_{s} = 3, 2 \text{ m} $ $ \sigma_{s} = 13, 7 $ $ \rho_{s} = 3, 2 \text{ m} $	S_{n} S_{n	122.9 km ² km×12km) = 13.7 MPa = 4.5 m	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \sigma_{b} = 2.1 \text{ MPa} \\ \hline D_{b} = 0.9 \text{ m} \\ \hline S_{a} = 57.8 \text{ km}^{2} \\ (8\text{km} \times 8\text{km}) \\ a = 13.7 \text{ MPa} \\ \hline D_{a} = 3.0 \text{ m} \\ \hline \end{array} $	2.0km 2.0km (研磨面) 上の距離) 16km 16km (断層面) 上の距離)
	34km		32km		

【参考文献】

- 吾妻 崇・吉岡敏和・苅谷愛彦・水野清秀(2000): 鈴鹿山地西縁断層帯、百済寺断層の反斜法地震 探査及びボーリング調査. 地質調査所速報、№EQ/00/2(平成11年度活断層・古地震研究調査概 要報告書), 127-137
- 片尾浩(2013):琵琶湖西岸断層帯付近における西下がりの微小地震傾斜角分布図.私信
- 小松原 琢・水野清秀・寒川 旭・七山 太・木下博久・新見 健・間野道子・吉村辰朗・井上 基・ 葛原秀雄・図司高志・中村美重・横井川博之(1999):琵琶湖西岸活断層系北部・饗庭野断層の 活動履歴. 地震, 51, 379-394.
- 小松原 琢(2006):琵琶湖西岸断層帯の変位量分布.月刊地球, 号外 54, 165-170.
- 地震調査研究推進本部 地震調査委員会(2009):震源断層を特定した地震の強震動予測手法(「レシピ」)
- 地震調查研究推進本部 地震調查委員会 (2010): 全国地震動予測地図 2010 年版
- 地震調査研究推進本部 地震調査委員会 (2012):活断層及び海溝型地震の長期評価結果一覧 (2012 年1月1日での算定)
- (独)防災科学技術研究所:地震ハザードステーション J-SHIS、http://www.j-shis.bosai.go.jp/
 水本匡起・吾妻崇・中田高・堤浩之・後藤秀昭・田力正好・松田時彦・松浦律子(2012):鈴鹿西
 縁断層帯における後期更新世以降の断層活動—反射法地震探査結果と微小な変位地形の整合性の
 検討—、2012年地球惑星連合科学大会発表要旨

地震調査研究推進本部:主要活断層帯の長期評価

地震調査研究推進本部(2003):琵琶湖西岸断層帯の長期評価について 地震調査研究推進本部(2009):琵琶湖西岸断層帯の長期評価の一部改訂について 地震調査研究推進本部(2003):三方・花折断層帯の長期評価について 地震調査研究推進本部(2004):木津川断層帯の長期評価について 地震調査研究推進本部(2004):頓宮断層の長期評価について 地震調査研究推進本部(2004):鈴鹿西縁断層帯の長期評価について 地震調査研究推進本部(2005):鈴鹿東縁断層帯の長期評価の一部改訂について 地震調査研究推進本部(2005):鈴鹿東縁断層帯の長期評価の一部改訂について 地震調査研究推進本部(2001):養老-桑名-四日市断層帯の評価

5.4 地震動解析 (震源~工学的基盤の地震動解析)

(1) 解析手法(震源~工学的基盤)

5.3 で設定した各断層の断層パラメータを用い、工学的基盤上(Vs≥600m/s)の地震動波形を統計的 グリーン関数法により算出した。なお、統計的グリーン関数法においては、位相波の作成方法やラ ディエーション係数の算出方法等の細かな計算手法は様々な方法が提案されているが、本検討では、 「中央防災会議」で採用されている手法を基本的に採用した。

強震動計算フローを図 5.4.1に、各計算ステップの詳細な手法を図 5.4.2に示す。

図 5.4.1 強震動計算フロー

今回適用した統計的グリーン関数法は、Irikura(1986)による重ね合わせ手法に基づく経験的グリーン関数法を 基本としている。経験的グリーン関数法ではグリーン関数として観測記録を用いることで、観測地点の深部地盤 構造や浅部地盤構造は、既に記録に含まれていると考えている。統計的グリーン関数法は適切な観測記録が得ら れない場合に有効な手法である。今回採用した手法では、グリーン関数としてはω²則に従う震源特性に従うスペ クトルモデル [Boore(1983)]を考え、これに経験的な位相特性を与えたものを使用した。深部地盤構造は一次元 成層構造として Haskell Matrix により地盤応答を考慮した。この波形をグリーン関数と考え、Irikura(1986)に従 い波形合成を行い、大地震の地震動波形を求めた。以下に具体的な作業内容を示す。

1)対象とする断層面を小断層に分割し、各小断層毎に、Boore(1983)の手法によりω²則を満たす振幅スペクト ルの形状を求める。今回採用したスペクトル形状は以下の通りである。

ここで、。は小断層の断層に関する添え字であり、F は地震波の放射特性($\bar{\rho}_{\bar{r}}$ ($_{I-\bar{\nu}_{3}\nun^{\circ}}$ $_{9-\nu}$)、 $\rho_{s}(kg/m^{3})$ およ び $\beta_{s}(m/s)$ は小地震断層における媒質の密度およびS 波速度、 $M_{0s}(N \cdot m)$ は地震モルント、 $f_{cs}(Hz)$ は臨界震動数、 $r_{s}(m)$ は震源から対象とする地点までの距離、Q(f)は伝播経路全体の平均のQ 値、 $\rho_{sb}(kg/m^{3})$ および $\beta_{sb}(m/s)$ は地震基盤の密度およびS 波速度である。また最終項は、自由表面の影響と要素断層における媒質と地震基盤 のインピーダンスの相違(佐藤, 1978)を考慮したものである(壇・他, 2000)。

- 2)(1)式中の F はラディエーション係数であるが、これは、各小断層から計算地点への方位角、射出角により計算する。この時、Kamae and Irikura(1992)と同様に、周波数依存型の放射特性を導入する。また、ここではS 波のみを考えているため、SH 波、SV 波毎に振幅スペクトルを求める。
- 3) Q 値は震源から計算地点までの伝播を考慮して評価する。
- 4)以上は、振幅スペクトルについてのみ考えてきたが、ここで、Boore(1983)に従って擬似乱数によるホワイト ノイズに包絡形を施した波形のスペクトルをかけ合わせ、位相を与える。なおこの際、香川(2004)の手法に倣 い長周期側でコヒーレント、短周期側でランダムな位相となるよう要素波を選定した。
- 5)上記手法で作成した計算地点での地震基盤におけるスペクトルに対して、工学的基盤までの地盤構造による増幅を考慮するため、SH 波については斜め入射のSH 波動場を、SV 波については、P-SV 波動場の応答計算を Haskell Matrix (線形) で行う。
- 6) 求められた工学的基盤でのTransverse, Radial, UD の波形を NS, EW, UD に射影する。
- 7) 各小断層からの波形を Irikura(1986)および入倉他(1997)に従って、それぞれの成分毎に足しあわせる。これ により、工学的基盤での3 成分波形を求める。なお、以上の作業は周波数領域で行う。
- 8) 位相は乱数時系列により与えられることから、用いる乱数時系列により最大加速度、最大速度、震度等、振幅 が異なることがある。このため、複数の乱数時系列で計算し、それらの結果の平均値を採用した。

出典:2006年 中央防災会議 中部圏・近畿圏直下地震対策 公表資料に一部修正・加筆 図 5.4.2 強震動計算手法

(2) 解析結果

各震源 5 断層×破壊開始点 2 ケースの計 10 ケースについて、工学的基盤面における 1km メッシュごとの地震動(最大水平速度および計測震度換算値)分布を図 5.4.3~図 5.4.7 に示す。

図 5.4.3 琵琶湖西岸断層帯の地震による工学的基盤面の想定地震動分布

図 5.4.4 花折断層帯(中南部)の地震による工学的基盤面の想定地震動分布

図 5.4.5 木津川断層帯の地震による工学的基盤面の想定地震動分布

図 5.4.6 鈴鹿西縁断層帯の地震による工学的基盤面の想定地震動分布

図 5.4.7 柳ケ瀬・関ヶ原断層帯の地震による工学的基盤面の想定地震動分布

(3) 経験式との比較

計算結果の妥当性確認として、以下に示す「司・翠川(1999)」による【経験式による工学的基盤上の最大速度】と【計算結果による工学的基盤上の最大速度】の比較を行った。各想定地震における経験式に必要なパラメータを表 5.4.1 に示す。経験式と計算結果の比較をエラー!参照元が見つかりません。に示す。なお、以下に示す「司・翠川(1999)」式は、せん断波速度 600m/s の地盤上の応答値であるため、せん断波速度 600m/s の地点のみプロットした図である。エラー!参照元が見つかりません。より、経験式と本検討における解析結果は概ね一致する結果となった。

地震名	Case	モーメント マク゛ニチュート゛ Mw	震源深さ D(km)	タイプ別 係数 d
琵琶湖西岸断属带	1	7 1	12.9	0
	2		12.2	0
花折断層帯	2	6.9	13.0	0
	3	0.5	11.7	0
卡净川彩屋世	1	6.8	10.2	0
个律川断層帝	3		10.2	0
於市西绿將居世	1	7.0	9.0	0
郭底四豚刚眉帘	2	7.0	9.0	0
柳,海,問, 百將屋世	1	7 1	12.0	0
例グ網• 剣グ広 川曽市	2	(.1	12.0	0

表 5.4.1 各想定地震のパラメータ

表 5.4.2 経験式と計算結果の比較

5.5 地震動解析(工学的基盤面~地表面:浅部地盤応答解析)

(1) 解析方法

5.4 で得られた工学的基盤面の地震波形を用い、浅部地盤モデル(250m メッシュ)を用いた 地震動解析により、地表面における地震動を推計した。

深部地盤の地震動推計結果である工学的基盤面(Vs=600m/s相当層の上面)の1kmメッシュ 毎の地震動データを16分割し、隣り合う1kmメッシュの各計測震度相当値により線形補間(地 震波形の振幅調整)した250mメッシュ毎の地震動波形を浅部地盤における地震応答解析の入力 地震動とした。

浅部地盤モデルの工学的基盤面(Vs=600m/s 相当層の上面)から Vs=350m/s 相当層上面までは、深部地盤と同様に線形応答解析(HASKELL MATRIX)により、Vs=350m/s 相当層上面から地表面までは、非線形応答解析(DYNES3D)により解析を行った。

地盤材料の非線形性は、地震により発生する地盤のひずみに応じたせん断剛性比(材料の硬 さ・軟かさ)と減衰定数(材料が軟らかくなるに従い揺れが抑えられる)の変化をモデル化する ことで表現した。今回の検討では、中央防災会議「東南海、南海地震等に関する専門調査会」で 設定された図 5.5.1 に示す動的変形特性(G/G0-y、h-y曲線)を使用した。

解析条件を表 5.5.1、表 5.5.2 に示す。なお、これらは内陸活断層地震に対する解析手法・条件であり、南海トラフの巨大地震に対しては7章に記載する別手法にて実施した。

*中央防災会議「東海地震に関する専門調査会」、「東海地震対策専門調査会」、

「東南海・南海地震等に関する専門調査会」データセット

図 5.5.1 動的変形特性曲線

表 5.5.1 地震動解析設定条件(工学的基盤面~Vs350m/s)

項目			
解析手法	線形応答解析(HASKELL MATRIX)		
入力地震動	想定5内陸地震動		
地層モデル	「南海トラフ修正1次モデル」 Vs=600m/s相当層より浅い部分		
地盤パラメータ	S波速度:Vs P波速度:Vp 単位体積重量: 「南海トラフ修正1次モデル」		

表 5.5.2 地震動解析設定条件(Vs350m/s~地表)

項目		設定方針	
解析手法	非線形応	答解析(DYNES3D)	
入力地震動	想定5内陸	地震動	
地層モデル	ボーリング	結果を基にした浅部地盤モデル(土質区分及びN値)	
S波速度Vs (せん断弾性係数G0)	PS検層結	果(N值-Vs関係)	
	粘性土	道路橋示方書 共通編(H24.3) 土の単位体積重量 自然地盤、粘性土、緩いものと密なものの平均値 (t = 16kN/m ³ 、 sat = 17kN/m ³)	
単位体積重量	砂質土	道路橋示方書 共通編(H24.3) 土の単位体積重量 自然地盤、砂質土、緩いものと密なものの平均値 (t = 18kN/m ³ 、 sat = 19kN/m ³)	
	礫質土	道路橋示方書 共通編(H24.3) 土の単位体積重量 自然地盤、砂及び砂れき、緩いものと密なものの平均値 (t = 19kN/m ³ 、 sat = 20kN/m ³)	
粘着力C	粘性土	道路橋示方書 下部構造編(H8.12) N値より換算式にて設定 (C=12.5N kN/m ²)	
せん断抵抗角	砂質土 道路橋示方書 下部構造編(H24.3) 礫質土 = 4.8LOGN ₁ +21 N ₁ ∶有効上載圧100kN/m ² 換算N値		
動的変形特性 G- h-	中央防災 [:] R-O(Ram	会議「東南海、南海地震に関する専門調査会」 berg-Osgood) モデル	

(2) 計測震度等の算定項目について

工学的基盤面から地表面の浅部地盤応答解析では、地表面における計測震度、加速度、速度、 SI 値を算定した。

【計測震度】

以下に示す気象庁計測震度の算出方法を用いた(出典:気象庁 HP)。

- 加速度時刻歴3成分(水平動2成分、上下動1成分)のそれぞれのフーリエ変換を行う
- 地震波の周期による影響を補正するフィルターを掛け、逆フーリエ変換を行い、時刻歴の 波形へ変換
- 得られたフィルター処理済みの3成分の波形をベクトル合成
- ベクトル波形の絶対値がある値 a 以上となる時間の合計を計算したとき、これがちょうど 0.3 秒となるような a を求める。
- I=2 log a + 0.94 により計測震度 I を計算し、震度階級を算定。

震度階級	計測震度	震度階級	計測震度
0	0.5 未満	5 弱	4.5 以上 5.0 未満
1	0.5 以上 1.5 未満	5 強	5.0 以上 5.5 未満
2	2.5 以上 3.5 未満	6 弱	5.5 以上 6.0 未満
3	2.5 以上 3.5 未満	6 強	6.0 以上 6.5 未満
4	3.5 以上 4.5 未満	7	6.5 以上

【加速度】

加速度は地震動の強さを表す一般的な指標の一つである。物体に瞬間的に作用する力(慣性力) は、加速度に比例して増大する性質がある。そのため、最大加速度が大きい場合は、大きな破壊 力を持つことになる。内陸活断層地震の地震動解析においては、地震応答解析による地表面加速 度の最大値(単位:gal)を抽出した。

【速度】

速度は加速度と同様に、地震動の強さを表す指標の一つである。物体が移動するときの速さと 方向を合わせたものであり、速度の変化率が上記の加速度となる。内陸活断層地震の地震動解析 においては、地震応答解析による地表面速度の最大値(単位:c/m (=kine))を抽出した。

【SI 值】

速度応答スペクトル(Sv※減衰定数 h=0.2)を用いて以下の式にて算出した。SI 値は、地震動の 周期 0.1~2.5 秒間(一般的な建物の固有周期帯)の速度応答スペクトルの平均値であり、建物に どの程度被害が生じるかを示す指標となる。

 $SI = \frac{1}{2.4} \int_{0.1}^{2.5} Sv dT (h = 0.2)$

(3) 地震動推計結果

5つの内陸活断層地震による県域の震度概況は、以下のとおりである。(震源断層モデルの設定 により、傾向は変わることに留意する必要がある。)

琵琶湖西岸断層帯(北部・南部連動 M7.8)-Case1:北部からの断層破壊を仮定

・高島市、大津市、草津市、守山市、栗東市、野洲市、近江八幡市の区域を中心に震度6強以上

琵琶湖西岸断層帯(北部・南部連動 M7.8)-Case2:南部からの断層破壊を仮定

・ Case 1 に比べ、特に大津市中南部、草津市での震度大

花折断層帯(中南部 M7.4)-Case2*:中部からの断層破壊を仮定

・大津市、栗東市、野洲市、守山市、草津市の区域を中心に震度6強以上

花折断層帯(中南部 M7.4)-Case3*: 南部からの断層破壊を仮定

・Case 2 と比較して、栗東市、守山市の震度小

<u>木津川断層帯(M7.3)-Case1*: 東側からの断層破壊を仮定</u>

・甲賀市の区域を中心に震度6強以上

<u>木津川断層帯(M7.3)-Case3*:西側からの断層破壊を仮定</u>

・甲賀市の区域を中心に震度6強以上。Case1に比べて市東部の震度小、市西部の震度大

<u> 鈴鹿西縁断層帯(M7.6)-Case1: 南側からの断層破壊を仮定</u>

・彦根市、甲賀市、東近江市、米原市、日野町、愛荘町、甲良町、多賀町の区域を中心に震度6強
 以上

鈴鹿西縁断層帯(M7.6)-Case2:北側からの断層破壊を仮定

・彦根市、甲賀市、東近江市、米原市、日野町、竜王町、愛荘町、豊郷町、甲良町、多賀町の区域
 を中心に震度6強以上

柳ヶ瀬・関ヶ原断層帯(南部・中部連動 M7.8)-Case1:北部からの断層破壊を仮定

・長浜市一帯、米原市の中北部で震度6強以上

柳ヶ瀬・関ヶ原断層帯(南部・中部連動 M7.8)-Case2:南部からの断層破壊を仮定

・Case1に比べ、震度7エリアがやや拡大

*花折断層帯、木津川断層帯は J-SHIS の断層モデルから暴露人口を考慮して破壊開始点を選定したため、J-SHIS による Case 番号と一致している。

市町名	琵琶湖西岸		花折		木津川		鈴鹿西縁		柳ヶ瀬/関ヶ原	
	Case1	Case2	Case2	Case3	Case1	Case3	Case1	Case2	Case1	Case2
大津市	7	7	7	7	6弱	6強	5強	5強	5弱	5弱
彦根市	5強	6弱	5強	5弱	5強	5弱	7	7	6弱	6強
長浜市	6弱	6弱	5弱	5弱	4以下	4以下	6強	6強	7	7
近江八幡市	6強	7	6弱	6弱	5強	5強	6弱	6弱	5強	6弱
草津市	7	7	6強	6強	6弱	6弱	5強	5強	5弱	5弱
守山市	7	7	6強	6強	5強	5強	5強	5強	5強	5弱
栗東市	6強	7	6強	6弱	6弱	6弱	5強	5強	5弱	5弱
甲賀市	6弱	6弱	6弱	5強	7	7	7	6強	5強	5弱
野洲市	6強	7	6強	6強	5強	5強	5強	5強	5強	5強
湖南市	6強	6強	6弱	6弱	6強	6強	6弱	6弱	5強	5弱
高島市	7	7	6弱	5強	4以下	4以下	5強	5強	6弱	6強
東近江市	6弱	6弱	5強	5強	6弱	6弱	7	7	6弱	6弱
米原市	5強	5強	5弱	5弱	5弱	4以下	6強	6強	7	7
日野町	5強	5強	5強	5強	6弱	6弱	7	7	5強	5弱
竜王町	6弱	5強	5強							
愛荘町	5強	6弱	5弱	5弱	5強	5弱	7	7	6弱	6弱
豊郷町	5強	6弱	5弱	5弱	5弱	5弱	6強	7	6弱	6弱
甲良町	5強	5強	5弱	5弱	5弱	5弱	7	7	6弱	6弱
多賀町	5強	5強	5弱	5弱	5弱	5弱	7	7	6弱	6弱

表 5.5.3 各市町区域内の最大震度推計値(内陸活断層地震)

(4) 解析結果

各震源 5 断層×破壊開始点 2 ケースの計 10 ケースについて、地表面における 250m メッシュ ごとの地震動分布推計結果を図 5.5.2~図 5.5.21 に示す。

【想定断層帯】

琵琶湖西岸断層帯(北部・南部連動 M7.8) -Case1:北部からの断層破壊を仮定 琵琶湖西岸断層帯(北部・南部連動 M7.8) -Case2:南部からの断層破壊を仮定 花折断層帯(中南部 M7.4) -Case2*:中部からの断層破壊を仮定 花折断層帯(中南部 M7.4) -Case3*:南部からの断層破壊を仮定 木津川断層帯(M7.3) -Case1*:東側からの断層破壊を仮定 木津川断層帯(M7.3) -Case3*:西側からの断層破壊を仮定 鈴鹿西縁断層帯(M7.6) -Case1:南側からの断層破壊を仮定 鈴鹿西縁断層帯(M7.6) -Case2:北側からの断層破壊を仮定 柳ヶ瀬・関ヶ原断層帯(南部・中部連動 M7.8) -Case1:北部からの断層破壊を仮定

*花折断層帯、木津川断層帯は J-SHIS の断層モデルから暴露人口を考慮して破壊開始点を選定したため、J-SHIS による Case 番号と一致している。

図 5.5.2 地表面地震動解析結果(琵琶湖西岸断層帯 Case1)

図 5.5.3 地表面地震動(計測震度:震度階)推計結果(琵琶湖西岸断層帯 Case1)

図 5.5.4 地表面地震動解析結果(琵琶湖西岸断層帯 Case2)

図 5.5.5 地表面地震動(計測震度:震度階)推計結果(琵琶湖西岸断層帯 Case2)

図 5.5.6 地表面地震動解析結果(花折断層帯 Case2)

図 5.5.7 地表面地震動(計測震度:震度階)推計結果(花折断層帯 Case2)

図 5.5.8 地表面地震動解析結果(花折断層帯 Case3)

図 5.5.9 地表面地震動(計測震度:震度階)推計結果(花折断層帯 Case3)

図 5.5.10 地表面地震動解析結果(木津川断層帯 Case1)

図 5.5.11 地表面地震動(計測震度:震度階)推計結果(木津川断層帯 Case1)

図 5.5.12 地表面地震動解析結果(木津川断層帯 Case3)

図 5.5.13 地表面地震動(計測震度:震度階)推計結果(木津川断層帯 Case3)

図 5.5.14 地表面地震動解析結果(鈴鹿西縁断層帯 Case1)

図 5.5.15 地表面地震動(計測震度:震度階)推計結果(鈴鹿西縁断層帯 Case1)

図 5.5.16 地表面地震動解析結果(鈴鹿西縁断層帯 Case2)

図 5.5.17 地表面地震動(計測震度:震度階)推計結果(鈴鹿西縁断層帯 Case2)

図 5.5.18 地表面地震動解析結果(柳ケ瀬・関ヶ原断層帯 Case1)

図 5.5.19 地表面地震動(計測震度:震度階)推計結果(柳ケ瀬・関ヶ原断層帯 Case1)

図 5.5.20 地表面地震動解析結果(柳ケ瀬・関ヶ原断層帯 Case2)

図 5.5.21 地表面地震動(計測震度:震度階)推計結果(柳ケ瀬・関ヶ原断層帯 Case2)